Difference between revisions of "Detailed Fire Modeling (Task 11)"

From FirePRA
Jump to navigation Jump to search
Line 1,976: Line 1,976:
 
| Plant-Wide Components
 
| Plant-Wide Components
 
| Electrical Cabinets
 
| Electrical Cabinets
| Placeholder
+
| NUREG-2178 / EPRI 3002005578 provides updated heat release distributions for electrical enclosures. The analyst should review the equipment function or size to determine an appropriate heat release rate distribution provided in Table 7-1.
| Placeholder
+
| [https://www.epri.com/#/pages/product/000000003002005578/?lang=en-US NUREG-2178 / EPRI 3002005578]
 
|-
 
|-
 
| 16.a
 
| 16.a

Revision as of 14:12, 12 November 2018

Task Overview

Background

This task describes the method to examine the consequences of a fire. This includes consideration of scenarios involving single compartments, multiple fire compartments, and the main control room. Factors considered include initial fire characteristics, fire growth in a fire compartment or across fire compartments, detection and suppression, electrical raceway fire barrier systems, and damage from heat and smoke. Special consideration is given to turbine generator (T/G) fires, hydrogen fires, high-energy arcing faults, cable fires, and main control board (MCB) fires. There are considerable improvements in the method for this task over the EPRI FIVE and Fire PRA Implementation Guide in nearly all technical areas.

Purpose

In the preceding tasks, the analyses were organized around compartments, assuming that a fire would have widespread impact within the compartment. In Task 11, for those compartments found to be potentially risk-significant (i.e., unscreened compartments), a detailed analysis approach is provided. As part of the detailed analysis, fire growth and propagation is modeled and possibility of fire suppression before damage to a specific target set is analyzed.

The detailed fire modeling process generally follows a common step structure, but the details of the analyses often vary depending on the specifics of the postulated fire scenario. This chapter provides separate procedures for three general categories of fire scenarios: fires affecting target sets located inside one compartment (discussed in Section 11.5.1); fires affecting the main control room (MCR; Section 11.5.2); and fires affecting target sets located in more than one fire compartment (multicompartment fire analysis; Section 11.5.3).

Task 11 provides final estimates for the frequency of occurrence of fire scenarios involving a specific fire ignition source failing a predefined target set before fire protection succeeds in protecting the target set. This result is combined in the final quantification steps that follow this task, with the CCDP/CLERP given failure of the target set to estimate the CDF/LERF contribution for each fire scenario. The CCDP/CLERP may include modified human error probabilities based on fire scenario specifics

Scope

Detailed fire modeling encompasses an analysis of the physical fire behavior (i.e., fire growth and propagation analysis), equipment damage, fire detection, and fire suppression. The fire scenarios to analyze as part of this detailed analysis task are divided into three categories:

  • General single compartment fire scenarios. This general category covers fire scenarios damaging target sets located within the same compartment, exclusive of those scenarios within or impacting the MCR. In general, in this category, the fire ignition source is in the same compartment as the target set. The majority of fire scenarios analyzed generally falls into this category. The procedures applicable to the analysis of these fire scenarios are presented in Section 11.5.1.
  • MCR fire scenarios. This general category covers all fires that occur within the MCR. This category also covers scenarios involving fires in compartments other than the MCR that may force MCR abandonment. The MCR analysis procedures are presented in Section 11.5.2.
  • Multicompartment fire scenarios: This general category covers all fire scenarios where it is postulated that a fire may spread from one compartment to another and damage target elements in multiple compartments. In this category of scenarios, damaging effects of a fire (e.g., heat) are assumed to spread beyond the compartment of fire origin. The multicompartment fire analysis procedures are presented in Section 11.5.3.

A detailed fire modeling analysis is performed for each fire scenario in each unscreened fire compartment. For many compartments, it may be appropriate to develop several fire scenarios to appropriately represent the range of unscreened fire ignition sources (i.e., scenarios that would not screen out in Task 8) that might contribute to the fire risk. Detailed fire modeling may utilize a range of tools to assess fire growth and damage behavior, and the fire detection and suppression response, for specific fire scenarios.

The ultimate output of Task 11 is a set of fire scenarios, frequency of occurrence of those scenarios, and a list of target sets (in terms of fire PRA components) associated with the scenarios. For scenarios involving the MCR, the possibility of forced abandonment is also noted. Note that a fire scenario represents a specific chain of events starting with ignition of a fire ignition source, propagation of the fire effects to other items, and possibility of damaging a set of items identified as target set before successful fire suppression.

Related Element(s) of ASME/ANS PRA Standard, ASME-RA-Sb-2013

Fire Scenario Selection (FSS)

Related EPRI 1011989 NUREG/CR-6850 Appendices

Appendix E, Appendix for Chapters 8 and 11, Severity Factors

Appendix F, Appendix for Chapter 8, Walkdown Forms

Appendix G, Appendix for Chapters 8 and 11, Heat Release Rates

Appendix H, Appendix for Chapters 8 and 11, Damage Criteria

Appendix L, Appendix for Chapter 11, Main Control Board Fires

Appendix M, Appendix for Chapter 11, High Energy Arcing Faults

Appendix N, Appendix for Chapter 11, Hydrogen Fires

Appendix O, Appendix for Chapter 11, Turbine Generator Fires

Appendix P, Appendix for Chapter 11, Detection And Suppression Analysis

Appendix Q, Appendix for Chapter 11, Passive Fire Protection Features

Appendix R, Appendix for Chapter 11, Cable Fires

Appendix S, Appendix for Chapter 11, Fire Propagation To Adjacent Cabinets

Appendix T, Appendix for Chapter 11, Smoke Damage

Recommended HRR Values for Electrical Fires

Enclosure Class/Function

Group

Enclosure Ventilation (Open or

Closed

Doors)

Fuel Type* (TS/QTP/SIS

or TP Cables)

Gamma Distribution Characteristics

(a)      Default

(b)      Low Fuel Loading

(c)       Very Low Fuel Loading

Alpha

Beta

75th Percentile (kW)

98th Percentile (kW)

Alpha

Beta

75th Percentile

(kW)

98th Percentile (kW)

Alpha

Beta

75th Percentile (kW)

98th Percentile (kW)

1 - Switchgear and Load Centers

Closed

TS/QTP/SIS

0.32

79

30

170

 

Closed

TP

0.99

44

60

170

 

2 - MCCs and Battery Chargers

Closed

TS/QTP/SIS

0.36

57

25

130

 

Closed

TP

1.21

30

50

130

NOT APPLICABLE

3 - Power Inverters

Closed

TS/QTP/SIS

0.23

111

25

200

 

Closed

TP

0.52

73

50

200

 

4a - Large Enclosures

[>1.42 m3

(>50 ft3)]

Closed

TS/QTP/SIS

0.23

223

50

400

0.23

111

25

200

0.38

32

15

75

Closed

TP

0.52

145

100

400

0.52

73

50

200

0.88

21

25

75

Open

TS/QTP/SIS

0.26

365

100

700

0.26

182

50

350

0.38

32

15

75

Open

TP

0.38

428

200

1000

0.38

214

100

500

0.88

21

25

75

4b - Medium Enclosures            [≤1.42 m3

(50 ft3)] and > 0.34 m3 (12 ft3)

Closed

TS/QTP/SIS

0.23

111

25

200

0.27

51

15

100

0.88

12

15

45

Closed

TP

0.52

73

50

200

0.52

36

25

100

0.88

12

15

45

Open

TS/QTP/SIS

0.23

182

40

325

0.19

92

15

150

0.88

12

15

45

Open

TP

0.51

119

80

325

0.30

72

25

150

0.88

12

15

45

4c - Small Enclosures

[ 0.34 m3

(12 ft3)]

Not Applicable

All

0.88

12

15

45

NOT APPLICABLE

Vertical cabinets, one cable bundle

Closed

TS/QTP/SIS

0.84

59.3

69

211

NOT APPLICABLE

Closed

TP

1.6

41.5

90

211

Vertical cabinets, more than one cable bundle

Closed

TS/QTP/SIS

0.7

216

211

702

NOT APPLICABLE

Closed

TP

2.6

67.8

232

464

Open

TP

0.46

386

232

1002

Pumps (electrical fires)

N/A

N/A

0.84

59.3

69

211

NOT APPLICABLE

Motors

N/A

N/A

2.0

11.7

32

69

NOT APPLICABLE

Transient Combustibles

N/A

N/A

1.8

57.4

142

317

NOT APPLICABLE

Supplemental Guidance

Bin Plant Location Ignition Source Fire Modeling Guidance Fire Modeling Reference
1 Battery Room Batteries Use HRR distribution for Electric Motors (Case 7 of Table G-1) EPRI 1011989 / NUREG/CR-6850
2 Containment (PWR) Reactor Coolant Pump Electrical Fire:

Oil Fire:

EPRI 1011989 / NUREG/CR-6850
3 Containment (PWR) Transients and Hotwork Transient:

Hotwork:

Placeholder
4 Control Room Main Control Board HRR Distribution for Function Group 4a (Large Enclosures) or Group 4b (Medium Enclosures) based on size of the main control board. NUREG-2178 / EPRI 3002005578
5 Control/Aux/Reactor Building Cable fires caused by welding and cutting FAQ 13-0005 provides additional guidance for detailed fire modeling on both self-ignited cable fires and cable fires caused by welding and cutting. This FAQ outlines a more realistic approach for addressing these types of fires in cable trays and suggests replacement text for Section R.1 of NUREG/CR-6850. However, the current method of evaluating cable fire risk in NUREG/CR-6850 remains an acceptable approach. FPRA-FAQ 13-0005
6 Control/Aux/Reactor Building Transient fires caused by welding and cutting Placeholder Placeholder
7 Control/Aux/Reactor Building Transients Placeholder Placeholder
8 Diesel Generator Room Diesel Generators Placeholder Placeholder
9 Plant-Wide Components Air Compressors Placeholder Placeholder
10 Plant-Wide Components Battery Chargers HRR Distribution for Enclosure Class 2, MCCs and Battery Chargers NUREG-2178 / EPRI 3002005578
11 Plant-Wide Components Cable fires caused by welding and cutting FAQ 13-0005 provides additional guidance for detailed fire modeling on both self-ignited cable fires and cable fires caused by welding and cutting. This FAQ outlines a more realistic approach for addressing these types of fires in cable trays and suggests replacement text for Section R.1 of NUREG/CR-6850. However, the current method of evaluating cable fire risk in NUREG/CR-6850 remains an acceptable approach. FPRA-FAQ 13-0005
12 Plant-Wide Components Cable Run (self-ignited cable fires) FAQ 13-0005 provides additional guidance for detailed fire modeling on both self-ignited cable fires and cable fires caused by welding and cutting. This FAQ outlines a more realistic approach for addressing these types of fires in cable trays and suggests replacement text for Section R.1 of NUREG/CR-6850. However, the current method of evaluating cable fire risk in NUREG/CR-6850 remains an acceptable approach. FPRA-FAQ 13-0005
13 Plant-Wide Components Dryers Placeholder Placeholder
14 Plant-Wide Components Electric Motors Electric Motor HRR Distribution (Case 7 of Table G-1) EPRI 1011989 / NUREG/CR-6850
15 Plant-Wide Components Electrical Cabinets NUREG-2178 / EPRI 3002005578 provides updated heat release distributions for electrical enclosures. The analyst should review the equipment function or size to determine an appropriate heat release rate distribution provided in Table 7-1. NUREG-2178 / EPRI 3002005578
16.a Plant-Wide Components High Energy Arcing Faults - Low Voltage Electrical Cabinets (480-1000 V) Placeholder Placeholder
16.b Plant-Wide Components High Energy Arcing Faults - Medium Voltage Electrical Cabinets (>1000 V) Placeholder Placeholder
16.1 Plant-Wide Components HEAF for segmented bus ducts Section 7.2.1.5 of Supplement 1 (FAQ 07-0035) provides an empirical model for estimating the ZOI for segmented bus duct fires. FAQ 07-0035, Section 7 of Supplement 1
16.2 Plant-Wide Components HEAF for iso-phase bus ducts Section 7.2.1.5 of Supplement 1 (FAQ 07-0035) provides an empirical model for estimating the ZOI for iso-phase duct fires. FAQ 07-0035, Section 7 of Supplement 1
17 Plant-Wide Components Hydrogen Tanks Placeholder Placeholder
18 Plant-Wide Components Junction Boxes FAQ 13-0006 provides a definition for junction boxes that allows the characterization and quantification of junction box fire scenarios in plant fire compartment requiring detailed Fire PRA/Fire Modeling analysis and (2) describe a process for quantifying the risk associated with junction box fire scenarios in such plant locations. FAQ 13-0006
19 Plant-Wide Components Miscellaneous Hydrogen Fires Placeholder Placeholder
20 Plant-Wide Components Off-gas/H2 Recombiner (BWR) Placeholder Placeholder
21 Plant-Wide Components Pumps and large hydraulic valves Placeholder Placeholder
22 Plant-Wide Components RPS MG Sets Use HRR distribution for Electric Motors (Case 7 of Table G-1) EPRI 1011989 / NUREG/CR-6850
23a Plant-Wide Components Transformers (oil filled) Placeholder Placeholder
23b Plant-Wide Components Transformers (dry) Use HRR distribution for Electric Motors (Case 7 of Table G-1) EPRI 1011989 / NUREG/CR-6850
24 Plant-Wide Components Transient fires caused by welding and cutting Placeholder Placeholder
25 Plant-Wide Components Transients Placeholder Placeholder
26 Plant-Wide Components Ventilation Subsystems Placeholder Placeholder
27 Transformer Yard Transformer - Catastrophic Placeholder Placeholder
28 Transformer Yard Transformer - Non Catastrophic Placeholder Placeholder
29 Transformer Yard Yard Transformers (Others) Placeholder Placeholder
30 Turbine Building Boiler Placeholder Placeholder
31 Turbine Building Cable fires caused by welding and cutting FAQ 13-0005 provides additional guidance for detailed fire modeling on both self-ignited cable fires and cable fires caused by welding and cutting. This FAQ outlines a more realistic approach for addressing these types of fires in cable trays and suggests replacement text for Section R.1 of NUREG/CR-6850. However, the current method of evaluating cable fire risk in NUREG/CR-6850 remains an acceptable approach. FPRA-FAQ 13-0005
32 Turbine Building Main Feedwater Pumps Placeholder Placeholder
33 Turbine Building Turbine Generator Excitor Placeholder Placeholder
34 Turbine Building Turbine Generator Hydrogen Placeholder Placeholder
35 Turbine Building Turbine Generator Oil Placeholder Placeholder
36 Turbine Building Transient fires caused by welding and cutting Placeholder Placeholder
37 Turbine Building Transients Placeholder Placeholder